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Abstract

We present an approach for the validation and verification of Web Services chore-
ographies, and more specifically, for those composite Web Services systems with
timing restrictions. We use a W3C proposal for the description of composite Web
Services, WS-CDL (Web Services Choreography Description Language), and we de-
fine an operational semantics for a relevant subset of it. We then define a translation
of the considered subset of WS-CDL into a network of timed automata, proving that
this translation is correct. Finally, we use the UPPAAL tool for the validation and
verification of the described system, by using the generated timed automata.
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1 Introduction

Web Services Choreographies provide a way to specify the inter-operation
of highly distributed and heterogeneous Web-hosted services. In the last few
years various approaches have been taken to describe Web Services composi-
tions, as WS-CDL (Web Services Choreography Description Language) [17],
WSCI (Web Service Choreography Interface) [2] or DAML-S [1,18]. With these
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languages, the collaborations and the conditions under which these collabo-
rations occur among the different actors in a composite Web Service are de-
scribed, which is the aim of the choreography level, the highest in the Service-
Oriented Architecture (SOA). A choreography is, then, a description of the
peer-to-peer externally observable interactions that occur between services.
The interactions between the participants are therefore described from a global
or neutral point of view and not from any one specific services perspective.
WS-CDL, as an standards exemplar, fulfils these requirements, defining a com-
mon behavioural contract for all the participants. A WS-CDL specification is
an XML document, which can be considered as a contract that all the partic-
ipants must follow. This contract describes the relevant global definitions, the
ordering conditions and the constraints under which messages are exchanged.
Each party can then use this global description to build and test solutions that
conform to it. The global specification is in turn enacted by a combination of
the resulting local systems, on the basis of appropriate infrastructure support.

By contrast, the orchestration level refers to the business logic that every par-
ticipant uses, so that it describes the composition at a different level. The
execution logic of Web Services-based applications is described at the orches-
tration level by defining their control flows (such as conditional, sequential,
parallel and exceptional execution) and prescribing the rules for consistently
managing their non-observable data. Thus, the orchestration refers to auto-
mated execution of a workflow, using an execution language such as WS-BPEL
[3].

However, the development of composite Web Services is still an emerging
technique, and in general there is a need for effective and efficient means to
abstract, compose, analyze, and evolve Web Services within an appropriate
time-frame [12]. This paper, then, concentrates on the validation and verifica-
tion of composite Web Services, by using formal techniques. Therefore, in this
work we present a technique for the formal verification and validation of Web
Services choreographies. The choreographies are described in WS-CDL and
validated and verified by using formal techniques. We specifically use timed
automata as a well-accepted formalism for the description of timed concurrent
systems, and thus, we define a translation of a relevant part of WS-CDL into a
network of timed automata (NTA). The validation and verification process is
then accomplished by using the UPAAL tool [13], which is an integrated tool
environment for modelling, validation and verification of real-time systems
modelled as networks of timed automata, extended with data types (bounded
integers, arrays, etc.). Thus, one of the most important contributions of this
work is the formal translation between the WS-CDL choreographies and timed
automata. For that purpose, we define a meta-model of the relevant subset
of WS-CDL under consideration, and an operational semantics for it. After-
wards, the translation is formally defined along with the proof of soundness,
in the sense that both the operational semantics of a term of the meta-model
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and the corresponding network of timed automata behave in the same way.

We have structured the paper as follows: a discussion of related work is shown
in Section 2. Section 3 shows a description of the Web Services Choreography
Description Language, as well as a barred operational semantics for a relevant
subset of it. Timed automata and their semantics are described in Section
4. The translation from WS-CDL to timed automata is defined in Section 5,
which is proved to be correct in Section 6. A Case Study that illustrates the
translation is presented in Section 7, and finally, the conclusions and future
work are presented in Section 8.

2 Related Work

The developers of WS-CDL claim that its design has been based on a formal
language, the π-calculus [16], and that therefore WS-CDL is a particularly
well-suited language for describing concurrent processes and dynamic inter-
connection scenarios. This relationship has been studied in [7], where the au-
thors compare a formalized version of WS-CDL, called global calculus, with
the π-calculus. They discuss how the same business protocols can be described
by WS-CDL and π-calculus equivalently, as two different ways of describing
communication-centered software in the form of formal calculi.

Jin Song Dong et al. [9] have analyzed orchestrations by means of the Orc

language, and they apply the UPPAAL model-checker to verify the described
systems. The main difference to our approach, then, is that they work with
orchestrations, rather than choreographies. Thus, Orc is a language close to
WS-BPEL. Howard Foster et al. [11] also use the orchestration level and WS-
BPEL to describe composite Web Services. The formalism used by Foster is
a Label Transition System (LTS), which is produced by using Finite State
Process (FSP) as an intermediate language. One of the most important con-
tributions of the group leaded by Foster has been the development of the
WS-Engineer framework, an eclipse plugin that implements these techniques.
The main difference to our work is that Foster’s work is more generalized, and
does not take into account timed behaviours. A more related work is that of
Yang Hongli et al. [22], in which WS-CDL is also analyzed by using formal
techniques. However, our work covers a wider subset of WS-CDL, which in-
cludes the main activity constructions of WS-CDL, variables, error handling,
and time-outs in interactions, and we further use a barred operational seman-
tics in order to formalize the language, maintaining the workunit operator as
a single operator, i.e., our meta-model is closer to the syntax of WS-CDL.
In [8] the verification of Web Services compositions written in WS-CDL is
also accomplished by using timed automata, but no formalization is provided
either for the WS-CDL semantics or for the translation to timed automata.
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There are other related works: Xu tao Du et al [10] have defined a formal
model, called Nested Web Service Interface Control Flow Automata (NWCFA),
which is aimed at the modelling of individual Web Services, which form a com-
position. This formalism focuses on the control flow and service invocation
behaviour and uses the technique of assertion-based verification of safety, call
stack inspection properties and pre/post conditions of certain service invoca-
tions. N. Sharygina [20] presents a model checking with abstraction technique
for Web Services, which translates php implementations into a kripke structure
to verify it with SATABS. There are other works that use Petri nets, in [21] a
timed-prioritized Petri net model is used to represent the behaviour of com-
posite Web Services described by a prioritized version of WS-CDL. Lohman et
al. [14] use open workflow net models and define a fully-automatic translation
of this formalism into abstract BPEL by using the Tools4BPEL framework.

There are also translations that use algebraic models: Salaun et al. [19] have
defined a process algebra to derive the interactive behaviour of a business
process starting from a BPEL4WS specification, A. Brogi et al. [6] have defined
a translation of WSCI (Web Service Choreography Interface) to CCS [15],
showing the benefits of such translation, and W.L. Yeung [23] has defined a
mapping from WS-CDL and BPEL4WS into CSP, providing a formal approach
to verifying the behaviour of collaborating Web services.

3 WS-CDL

In this subsection we first present a description of the main features of WS-
CDL, and an operational semantics for the specific subset of WS-CDL that
we use. We will use this semantics in order to establish an equivalence with
the NTA that we associate with a WS-CDL model.

3.1 WS-CDL Description

A WS-CDL document [17] basically consists of parties, roles, the exchanged
information description, choreographies, channels and activities. Parties and
roles are used respectively to specify the collaborating entities and the dif-
ferent types of behaviour of these entities, although, for simplicity, we will
use parties and roles indistinctly. Choreographies are the main elements of a
WS-CDL description. In general, a WS-CDL document contains a hierarchy of
choreographies, one of them being the root choreography, while the others are
performed by explicit invocation. However, in this paper we will only consider
plain WS-CDL documents, which have only the root choreography.
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A choreography has three main parts: the life-line, the exception block, and the
finalizer blocks. The life-line contains the activities performed by the chore-
ography in normal conditions. In the event of a failure, the control flow is
transferred to the exception block (or the exception is propagated to the en-
closing choreography when the exception cannot be handled in its exception
block). A finalizer block in a choreography is always associated to an immedi-
ately enclosed choreography, and can only be executed (by explicit invocation)
when its corresponding choreography has successfully completed its execution.
Obviously, the root choreography will not have any finalizer blocks, so we will
omit them in our meta-model.

Channels are used to establish where and how the information is exchanged,
but they are unimportant for our purposes, so we will abstract them in our
meta-model. The collaborative behaviour of the participants in a choreogra-
phy is described by means of activities. These are the lowest level components
of a choreography, and are divided into three groups: basic activities, order-

ing structures and workunits. The basic activities are used to establish the
variable values (assign), to indicate some inner action of a specific participant
(silent action), or that a participant does not perform any action (noaction),
and also to establish a exchange of messages between two participants (interac-

tion). An interaction can be assigned a time-out , i.e., a time to be completed.
When this time expires (after the interaction was initiated), if the interaction
has not completed, the timeout occurs and the interaction finishes abnormally,
causing an exception block to be executed in the choreography.

The ordering structures are used to combine activities with other ordering
structures in a nested structure to express the ordering conditions under which
information within the Choreography is exchanged. The ordering structures
are the sequence, choice and parallel, with the usual interpretation. Finally,
workunits are used to allow the execution of some activities when a certain
condition holds. Thus, a workunit encapsulates one activity, which can only be
executed if the corresponding guard is evaluated to true. Furthermore, there is
another guard in the workunits in order to allow the iteration of the enclosed
activity.

3.2 Syntax and Semantics

We now define the formal syntax and the semantics for the meta-model of the
subset of WS-CDL that we use. We call Var the set of variable names used
in the choreography, the clock variable being one of these variables, which
contains the current time, and thus, automatically increases its value as time
elapses. We assume that each role type uses its own variable names, i.e., a
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variable name can only be used by a single role type 1 , excepting the clock

variable, whose value can be considered as obtained from a time server. For
simplicity we only consider non-negative integer variables, although it would
not be problematic to extend this assumption to any number of data types.
Furthermore, we also consider that each interaction only contains one exchange
element, which is used to communicate the value of a variable from one role
type to the other.

The specific algebraic language that we use, then, for the activities is defined
by the following BNF-notation:

A ::= fail | assign(r, v, n) | noaction(r) | inter(r1, r2, v1, v2, t) | A ; A |

A2 A | A ‖A |workunit(g, block , g′, A)

where r, r1, r2 range over the roletypes of the choreography, t ∈ IN ∪ {∞},
v, v1, v2 range over Var , n ∈ IN, g, g′ are predicates that use the variable names
in Var , and block is a boolean. Given a predicate g, we will call Vars(g) the
set of variables used in g.

The basic activities are fail , assign , noaction and inter ; fail is used to raise
an exception, the control flow is transferred to the exception block, and after
that the choreography terminates. The assign operation is used to assign the
variable v at role r to n, and this is immediate, i.e., it does not take any
time to complete; the noaction captures either a silent or internal operation
at role r, and this is immediate too. The inter operation is used to capture
an interaction between roles r1 and r2, with a time-out t (which can be infi-
nite), where the value of variable v2 in r2 is assigned to the value of variable
v1 of r1. If the time-out expires and the interaction has not been executed,
then, the exception block of the choreography is executed, and after that the
choreography terminates. An interaction also fails when the variable v1 in r1

is unassigned.

The ordering structures are the sequence, choice, parallel and workunit. The
workunit operator has the following interpretation: firstly, if some of the vari-
ables used in g are not available, or if g evaluates to false, then, depending on
the block attribute the workunit is skipped or it is blocked until g is evaluated
to true. When the guard evaluates to true, the activity inside the workunit is
executed, and when it terminates, the repetition condition g′ is evaluated. If
some variable used in g′ is not available or if g′ is false, then, the workunit ter-
minates, otherwise the activity inside it is executed again. The sequence and
parallel operators have the usual interpretation. For the choice, any activity

1 Actually, WS-CDL does not allow the use of shared variables.

6



of those enabled in the choice 2 can be executed. We also impose for the block
attribute of the workunits that are alternatives of a choice the condition of
being true, since in that case we must only consider those workunits whose
guard evaluates to true, and it makes no sense to abandon the choice when a
workunit guard is false.

A choreography is now defined as a pair (A1, A2), where A1 and A2 are ac-
tivities defined by the previous syntax. A1 is the activity of the life-line of
the choreography and A2 is the activity of its exception block, which can be
empty (denoted by ∅), because the exception block is optional.

We now introduce the operational semantics for this language, by using both
overbarred and underbarred dynamic terms, which are used to capture the
current state of the choreography throughout its execution. Before introducing
the dynamic terms, we need to consider an extended version of the activity
syntax, in which we add the following operator dinter(r1, r2, v1, v2, t, t

′), with
t′ ≤ t, called dynamic interaction, which represents an interaction that initially
had a time-out t and now has t′ time units left before expiration. We will use
letters B,B1, B2, . . . to denote activities with the extended syntax, which are
used to define the dynamic terms, these are defined by the following BNF-
notation:

D ::= B | B | D ; B | B ; D | D 2 B | B 2D |

D ‖D | workunit(g, block , g′, D)

The set of dynamic terms will be called Dterms . The overbars are used to
indicate that the corresponding term can initiate its execution, whereas un-

derbarred terms have already finished their execution. Thus, as the activity
evolves along its execution the bars are moving throughout the term syntax.

Example 1 Consider the activity A = workunit(g, true, g′, assign(r, v, 1)).
Its execution starts with the dynamic term A, from which the guard g is
evaluated. If all the variables in g are available, and g becomes true, then,
we reach the dynamic term D1 = workunit(g, true, g′, assign(r, v, 1)), which
means that the assignment of v can now start at role r. Otherwise, if some
variable needed to evaluate g is not available, or if g is false, as the block

condition is true , the activity blocks until g changes its value to true. Once
the assignment of v is done, the following dynamic term is reached: D2 =
workunit(g, true, g′, assign(r, v, 1)), from which g′ is evaluated. If some variable
needed to evaluate g′ is not available or g′ is false, then, the workunit ends
and the dynamic term A is reached. Otherwise, when g′ is true, D1 is reached
again.

2

2 In the sense that it can execute some action at the current instant.
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(Seq1) B1; B2 ≡ B1; B2 (Seq2) B1; B2 ≡ B1; B2

(Seq3) B1; B2 ≡ B1; B2 (Cho1) B1 2 B2 ≡ B1 2 B2

(Cho2) B1 2 B2 ≡ B1 2 B2 (Cho3) B1 2 B2 ≡ B1 2 B2

(Cho4) B1 2 B2 ≡ B1 2 B2 (Par1) B1 ‖B2 ≡ B1 ‖B2

(Par2) B1 ‖B2 ≡ B1 ‖B2

(Inter) inter(r1, r2, v1, v2, t) ≡ dinter(r1, r2, v1, v2, t, t)

(Cong1)
∀op ∈ {; , 2}, D1 ≡ D2

B op D1 ≡ B op D2 , D1 op B ≡ D2 op B

(Cong2)
D1 ≡ D2

D ‖D1 ≡ D ‖D2 , D1 ‖D ≡ D2 ‖D

(Cong3)
D1 ≡ D2

workunit(g, block , g′, D1) ≡ workunit(g, block , g′, D2)

Table 1
Equivalence rules

In this example we have used dynamic terms to represent the current state of
the system. However, dynamic terms like B1 2 B2, B1 2 B2 and B1 2 B2

correspond to the same state in the system, a state in which any alternative
of the choice must be enabled. This means that in some cases the bars can be
redistributed on a dynamic term yielding to an equivalent state. Thus, we now
define the equivalence relation ≡, as the least equivalence relation satisfying
the rules of Table 1. By means of this equivalence relation we can identify
those dynamic terms that can be obtained by movingthe bars on the terms
backwards or forwards, without executing any action and which correspond
to the same state in the system. It will also identify the activation of an
interaction with the corresponding dynamic interaction that has the whole
time-out to complete.

For any dynamic term D we will denote the class of dynamic terms equivalent
to D by [D]≡ , and the set of classes of dynamic terms will be called CDterms .

The rules of Table 1 are immediately intuitive in general. Seq1 is used to
activate the first activity of a sequence when the sequence becomes activated,
Seq2 allows us to activate B2 when B1 terminates, and Seq3 establishes that
once B2 ends, the sequence B1; B2 ends too. Cho1 and Cho2 allow us to
activate either alternative of a choice, while Cho3 and Cho4 establish that
once the selected alternative terminates the choice itself ends, too. Par1 is used
to activate both arguments in a parallel activity, and Par2 establishes that,
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when both argument activities terminate, the parallel activity terminates, too.
Inter identifies the activation of an interaction with the dynamic interaction
having its whole time-out to be executed. The last three rules establish that
≡ is actually a congruence.

Definition 1 (Initial and final dynamic terms)
Given a dynamic term D, we say that D is initial (resp. final), denoted by
init(D) (resp. final(D)), when there exists an extended activity B such that
B ∈ [D]≡ (resp. B ∈ [D]≡). In such a case we will say that the class [D]≡ is
initial (resp. final) too.

2

For instance, the terms (assign(r, v, n)), (assign(r, v, n) 2 noaction(r)) and
(assign(r, v, n) ‖ noaction(r)) are all initial.

A choreography is executed within the context of the variables defined in
it, where a context µ is defined as a function µ : Var → IN ∪ {ǫ}, which
assigns a value to every variable, where unavailable variables are assigned the
ǫ value. We denote the set of possible contexts of a choreography by Contexts.
The initial context , denoted by µ0, is that defined by assigning ǫ to all the
variables in the choreography, except the clock, which is assigned to 0. Given
a context µ, a variable v and an integer arithmetic expression n, we denote
by µ[v/n] the context obtained from µ by changing the value of v to n. Given
a predicate g and a context µ, we will write sat(µ, g) when ∀v ∈ Vars(g),
µ(v) 6= ǫ, and g evaluates to true under µ.

Time elapsing is captured by means of the following function, which ages a
class of dynamic terms by one time unit:

Definition 2 (Aging function)
The function aging : CDterms → CDterms is defined in a structural way, as
follows:

For any dynamic terms D,D1, D2:

(1) If final(D), then aging([D]≡) = [D]≡.

(2) aging([fail ]≡) = [fail ]≡.

(3) aging([assign(r, v, n)]≡) = [assign(r, v, n)]≡.

(4) aging([noaction(r)]≡) = [noaction(r)]≡.

(5) For t′ > 0 :

aging([dinter(r1, r2, v1, v2, t, t′)]≡) = [dinter(r1, r2, v1, v2, t, t′ − 1)]≡,
where we take ∞− 1 = ∞.

(6) aging([dinter(r1, r2, v1, v2, t, 0)]≡) = [fail ]≡.

(7) aging([workunit(g, block , g′, B)]≡) = [workunit(g, block , g′, B′)]≡,
with B′ such that B′ ∈ aging([B]≡).

(8) aging([workunit(g, block , g′,D)]≡) = [workunit(g, block , g′,D′)]≡,
with D′ ∈ aging([D]≡).
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(9) If ¬final(D) : aging([D;B]≡) = [D′;B]≡, and aging([B;D]≡) = [B;D′]≡, with
D′ ∈ aging([D]≡).

(10) If ¬init(D) ∧ ¬final(D) : aging([B 2D]≡) = [B 2D′]≡, and
aging([D 2B]≡) = [D′

2B]≡, with D′ ∈ aging([D]≡).

(11) If init(D) ∧ ¬final(D) : aging([B 2D]≡) = [B′
2D′]≡, and

aging([D 2B]≡) = [D′
2B′]≡, with D′ ∈ aging([D]≡) and B′ such that B′ ∈ aging([B]≡).

(12) If ¬final(D1) ∧ ¬final(D2) : aging([D1 ‖D2]≡) = [D′

1
‖D′

2
]≡,

with D′

1
∈ aging([D1]≡) and D′

2
∈ aging([D2]≡).

(13) If final(D1) ∧ ¬final(D2) : aging([D1 ‖D2]≡) = [D1 ‖D′

2
]≡, and

aging([D2 ‖D1]≡) = [D′

2
‖D1]≡, with D′

2
∈ aging([D2]≡). 2

From this definition, we can see that when an interaction expires (point 6) we
obtain a failure, which will allow us to execute the exception block (except if
we find ourselves facing a choice with some other possible alternatives, as we
will see later). The passage of time for dynamic interactions is captured by
means of point 5. We can also see that the passage of time over an activated
workunit is passed to the activity inside it (point 7), since we consider that
the first activity of the workunit is in some sense activated once the workunit
has been reached (although it can only be executed when the guard condition
is true). Point 11 also requires some explanations, in this case the passage of
time over an activated choice is passed to both argument activities. As the
remaining points are quite self-explanatory, we shall omit further comment.

Therefore, with the function aging we transform one class into another, cap-
turing the elapse of one time unit. However, in some cases we do not allow the
passage of time, since some movement must be made immediately. This oc-
curs, for instance, when an exception has been raised; in this case the exception
block is immediately executed. Furthermore, in general, not only time elaps-
ing, but all the possible evolutions of a class depend on the current context.
Hence, we introduce the so-called contextual activity terms, as pairs ([D]≡, µ),
where D is a dynamic term and µ a context. Then, we now define a boolean
function elapse , which indicates to us whether time can or cannot elapse for
any contextual activity term.

Definition 3 (Function elapse)
The function elapse : CDterms × Contexts → Boolean is defined in a struc-
tural way, as follows:

For any dynamic terms D,D1, D2 and any context µ:

(1) If final(D), then elapse([D]≡, µ) = true.

(2) elapse([fail ]≡, µ) = false.

(3) elapse([assign(r, v, n)]≡, µ) = true.

(4) elapse([noaction(r)]≡, µ) = true.

(5) If µ(v1) 6= ǫ : elapse([dinter(r1, r2, v1, v2, t, t′)]≡, µ) = true.

(6) If µ(v1) = ǫ : elapse([dinter(r1, r2, v1, v2, t, t′)]≡, µ) = false.
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(7) elapse([workunit(g, block , g′, B)]≡, µ) = block .

(8) If ¬final(D) : elapse([workunit(g, block , g′,D)]≡, µ) = elapse([D]≡).

(9) If final(D) : elapse([workunit(g, block , g′,D)]≡, µ) = false.

(10) If ¬final(D) :
elapse([D;B]≡, µ) = elapse([B;D]≡, µ) = elapse([D]≡, µ).

(11) If ¬init(D) ∧ ¬final(D) :
elapse([B 2D]≡, µ) = elapse([D 2B]≡, µ) = elapse([D]≡, µ).

(12) If init(D) :
elapse([B 2D]≡, µ) = elapse([D 2B]≡, µ) =
elapse([B]≡, µ) ∨ elapse([D]≡, µ).

(13) If ¬final(D1) ∧ ¬final(D2) :
elapse([D1 ‖D2]≡, µ) = elapse([D1]≡, µ) ∧ elapse([D2]≡, µ).

(14) If final(D1) ∧ ¬final(D2) :
elapse([D1 ‖D2]≡, µ) = elapse([D2 ‖D1]≡, µ) = elapse([D2]≡, µ). 2

To check that elapse is a well defined function is immediate. By means of
elapse the passage of time is not allowed when an exception has been raised
(point 2), except in the case of the failure being caused by an alternative of a
choice, since some other alternatives could be allowed. Thus, for instance, if an
interaction with a time-out has expired, this interaction cannot be executed,
but there may be some other possible alternatives in the choice that are still
enabled. In point 6, we can also see that, when the source variable of an
interaction is unassigned, time cannot elapse, because we immediately raise
an exception. In the case of an activated workunit (point 7), depending on
the block attribute we can wait or not, and when the activity of the workunit
terminates, the repetition condition g′ must be evaluated immediately, so no
time can elapse here (point 9). For an activated choice (point 12) we allow
the passage of time when at least one alternative does allow it. Thus, in a
choice we may have some interactions with time-outs that have expired, but
the choice may still offer some alternatives. However, in the case of a parallel,
time cannot elapse when one alternative does not allow this.

Definition 4 We define a dynamic choreography term as a pair of one of
the following forms: ([D]≡, A2) or (A1, [D]≡), where [D]≡ corresponds to the
activity in execution in the choreography (the life-line or its exception block),
and A2 can be empty.

We also define a contextual dynamic choreography term , as a pair (C, µ), where
C is a dynamic choreography term and µ is a context.

Given a choreography C = (A1, A2), the initial contextual dynamic term of C
is 3 ([A1]≡, A2, µ0). 2

In Tables 2 and 3, we introduce the rules that define the transitions for the
contextual activity terms, where we can see that we have two types of transi-

3 We will write contextual dynamic choreography terms as triples, by omitting the
parentheses for the dynamic choreography term.
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(Clock)
elapse([D]≡, µ)

([D]≡, µ) −→1 (aging([D]≡), µ[clock/clock + 1])

(Fail)

([fail ]≡, µ)
fail
−→ ([fail ]≡, µ)

(Assign)

([assign(r, v, n)]≡, µ)
assign(r,v,n)

−−−→ ([assign(r, v, n)]≡, µ[v/n])

(Noact)

([noaction(r)]≡, µ)
noaction(r)
−−−→ ([noaction(r)]≡, µ)

(Int1)

µ(v1) 6= ǫ

([dinter(r1, r2, v1, v2, t, t′)]≡, µ)
inter(r1,r2,v1,v2,t)

−−−→ ([dinter(r1, r2, v1, v2, t, t′)]≡, µ[v2/v1])

(Int2)
µ(v1) = ǫ

([dinter(r1, r2, v1, v2, t, t′)]≡, µ)
fail
−→ ([fail ]≡, µ)

(Work1)
sat(µ, g), ([B]≡, µ)

a
−→ ([D]≡, µ′) , a 6= fail

([workunit(g, block , g′, B)]≡, µ)
a

−→ (workunit(g, block , g′, [D]≡), µ′)

(Work2)
sat(µ, g), ([B]≡, µ)

fail
−→ ([fail ]≡, µ)

([workunit(g, block , g′, B)]≡, µ)
fail
−→ ([fail ]≡), µ)

(Work3)
¬sat(µ, g)

([workunit(g, false, g′, B)]≡, µ)
∅

−→ ([workunit(g, false, g ′,B)]≡, µ)

(Work4)
([D]≡, µ)

a
−→ ([D′]≡, µ′) , a 6= fail

([workunit(g, block , g′, D)]≡, µ)
a

−→ ([workunit(g, block , g′, D′)]≡, µ′)

(Work5)
([D]≡, µ)

fail
−→ ([fail ]≡, µ)

([workunit(g, block , g′, D)]≡, µ)
fail
−→ ([fail ]≡, µ)

(Work6)
sat(µ, g′), D ≡ B

([workunit(g, block , g′, D)]≡, µ)
∅

−→ ([workunit(g, block , g′, B)]≡, µ)

(Work7)
¬sat(µ, g′), D ≡ B

([workunit(g, block , g′, D)]≡, µ)
∅

−→ ([workunit(g, block , g′, B)]≡, µ)

Table 2
Transition rules for contextual activity terms (I)

tion:

• ([D]≡, µ) −→1 ([D′]≡, µ′) : which represents the passage of one time unit.
• ([D]≡, µ)

a
−→ ([D′]≡, µ′) : which represents the execution of some basic

activity a or an empty movement (denoted by a = ∅). In this case no time
elapses.

In rules Par1 and Par2 of Table 3 we use the notation ([D]≡, µ)
fail
−→/ to

mean that no transition labelled with fail can be executed from ([D]≡, µ).
Rule Clock is used to capture the passage of one time unit. Rules Fail, Assign
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(Seq1-2)
([D]≡, µ)

a
−→ ([D′]≡, µ′) , a 6= fail

([D; B]≡, µ)
a

−→ ([D′; B]≡, µ′)

([D]≡, µ)
a

−→ ([D′]≡, µ′) , a 6= fail

([B; D]≡, µ)
a

−→ ([B; D′]≡, µ′)

(Seq3-4)
([D]≡, µ)

fail
−→ ([fail ]≡, µ) ,

([D; B]≡, µ)
fail
−→ ([fail ]≡, µ)

([D]≡, µ)
fail
−→ ([fail]≡, µ) ,

([B; D]≡, µ)
fail
−→ ([fail ]≡, µ)

(Choi1-2)
([B1]≡, µ)

a
−→ ([D]≡, µ′) , a 6= fail

([B1 2 B2]≡, µ)
a

−→ ([D 2B2]≡, µ′)

([B2]≡, µ)
a

−→ ([D]≡, µ′) , a 6= fail

([B1 2 B2]≡, µ)
a

−→ ([B1 2D]≡, µ′)

(Choi3)
([B1]≡, µ)

fail
−→ ([fail ]≡, µ) , ([B2]≡, µ)

fail
−→ ([fail ]≡, µ)

([B1 2 B2]≡, µ)
fail
−→ ([fail ]≡, µ)

(Choi4)
([D]≡, µ)

a
−→ ([D′]≡, µ′) , ¬init(D) , a 6= fail

([D 2 B]≡, µ)
a

−→ ([D′
2B]≡, µ′)

(Choi5)
([D]≡, µ)

a
−→ ([D′]≡, µ′) , ¬init(D) , a 6= fail

([B 2 D]≡, µ)
a

−→ ([B 2D′]≡, µ′)

(Choi6-7)
([D]≡, µ)

fail
−→ ([fail ]≡, µ) , ¬init(D)

([B 2 D]≡, µ)
fail
−→ ([fail ]≡, µ)

([D]≡, µ)
fail
−→ ([fail ]≡, µ) , ¬init(D)

([D 2 B]≡, µ)
fail
−→ ([fail ]≡, µ)

(Par1)
([D1]≡, µ)

a
−→ ([D′

1]≡, µ′) , a 6= fail , ([D2]≡, µ)
fail
−→/

([D1‖D2]≡, µ)
a

−→ ([D′
1‖D2]≡, µ′)

(Par2)
([D2]≡, µ)

a
−→ ([D′

2]≡, µ′) , a 6= fail , ([D1]≡, µ)
fail
−→/

([D1‖D2]≡, µ)
a

−→ ([D1‖D
′
2]≡, µ′)

(Par3-4)
([D2]≡, µ)

fail
−→ ([fail ]≡, µ)

([D1‖D2]≡, µ)
fail
−→ ([fail ]≡, µ)

([D1]≡, µ)
fail
−→ ([fail ]≡, µ)

([D1‖D2]≡, µ)
fail
−→ ([fail ]≡, µ)

Table 3
Transition rules for contextual activity terms (II)

and Noact are evident, whereas Int1 captures the execution of an activated in-
teraction, when the source variable has a value assigned. Otherwise, rule Int2

is used to raise an exception. Rules Work1 to Work7 establish the seman-
tics of workunits, according to the interpretation described previously. Rules
Seq1 to Seq4 capture the semantics of the sequence operator, while Choi1 to
Choi7 define the semantics of the choice. In rule Choi3 we can see that in a
choice we can only execute a fail movement when both arguments are able
to do so. Accordingly, when an alternative fails (for instance, a time-out of
an interaction has expired), this alternative is not considered for execution,
but the other ones can proceed (in fact, we allow time elapsing in that case,
because we may have some other interactions that can be executed some time
later). Finally, rules Par1-2 capture the (independent) parallel execution of
the argument activities of a parallel operator, and Par3-4 are used to raise an
exception when one component is able to do so.

13



(Cor1)
([D]≡, µ) −→1 ([D′]≡, µ′)

([D]≡, A2, µ) −→1 ([D′]≡, A2, µ′)
(Cor2)

([D]≡, µ) −→1 ([D′]≡, µ′)

(A1, [D]≡, µ) −→1 (A1, [D′]≡, µ′)

(Cor3)
([D]≡, µ)

a
−→ ([D′]≡, µ′), a 6= fail

([D]≡, A2, µ)
a

−→ ([D′]≡, A2, µ′)
(Cor4)

([D]≡, µ)
a

−→ ([D′]≡, µ′), a 6= fail

(A1, [D]≡, µ)
a

−→ (A1, [D′]≡, µ′)

(Cor5)
([D]≡, µ)

fail
−→ ([fail ]≡, µ) , A2 6= ∅

([D]≡, A2, µ)
fail
−→ (B1, [A2]≡, µ)

(Cor6)
([D]≡, µ)

fail
−→ ([fail ]≡, µ)

(A1, [D]≡, µ)
fail
−→ (A1, [fail ]≡, µ)

Table 4
Transition rules for choreographies

The rules for choreographies are those introduced in Table 4, which capture
the evolution of contextual dynamic choreography terms, as an extension of
the contextual activity terms. We then define the labelled transition system of
a choreography C = (A1, A2) as that obtained by the application of these rules
starting from q0 = ([A1]≡, A2, µ0), and we call timed traces the concatenation
of both actions and delays that can be executed from the initial state. Timed
traces are denoted by letters s, s′ ∈ (IN ∪ Act)∗, where the concatenation of
n consecutive delay transitions in a row is considered as a single element n in
the trace, n ∈ IN, and Act is the set of action names, including ∅.

We can also introduce the so-called contextual timed traces, namely, the timed
traces obtained for a dynamic activity term, but considering any possible
context throughout its evolution.

Definition 5 (Contextual Timed Traces)
Let D be a dynamic activity term. We define the set of contextual timed traces

of [D]≡ as follows:

Ctr([D]≡) = {ǫ} ∪ {s ∈ (IN ∪ Act)∗ | ([D]≡, µ)
s1−→ ([D1]≡, µ1), and for all

i ∈ {1, . . . , length(s)}, ([Di]≡, µ′
i)

si+1
−→ ([Di+1]≡, µi+1), for any contexts µ, µi, µ

′
i}

where ǫ stands for an empty trace, si is the ith-component of s, si ∈ IN ∪
Act , ([Di]≡, µi)

si+1
−→ ([Di+1]≡, µi+1) denotes the evolution from ([Di]≡, µi) to

([Di+1]≡, µi+1), either by executing an action si ∈ Act (possibly empty), or by
time elapsing (si transitions −→1).

2

This definition can be extended to choreographies in a straightforward way.
Notice that in this definition we do not only consider the timed traces that are
reachable starting from a specific contextual activity term ([D]≡, µ), but all
the timed traces generated considering any intermediate context throughout
the evolution of [D]≡, i.e., for any reachable dynamic activity term Di we
take this term with any possible context and we then consider all its possible
evolutions.

14



4 Timed Automata

A timed safety automaton, or simply timed automaton (TA) [4,5] is essentially
a finite automaton extended with real-valued variables. These variables model
the logical clocks in the system, and are initialized to zero when the system
is started. They then increase their value synchronously as time elapses, at
the same rate. In the model there are also clock constraints, which are guards
on the edges that are used to restrict the behaviour of the automaton, since
a transition represented by an edge can only be executed when the clock
values allow the guard condition to be satisfied. Nevertheless, transitions are
not forced to execute when their guards are true, the automaton being able
to stay at a location without executing any transitions, unless an invariant
condition is associated with that location. In this case, the automaton may
remain at that same location as long as the invariant condition is satisfied.
Additionally, the execution of a transition can be used to reset some clocks of
the automaton.

In the timed automata model that we consider we have also non-negative
integer variables and urgent edges. The variables can be assigned a value
when executing an edge, and their values can be checked in the guards and
invariants. Urgent edges inhibit time elapsing when they are enabled.

Definition 6 (Timed Automaton)
We consider a finite set of real-valued variables C ranged over by x, y, . . .
standing for clocks, a finite set of non-negative integer-valued variables V ,
ranged over by v, w, . . . and a finite alphabet Σ ranged over by a, b, . . . standing
for actions. We will use letters r, r′, . . . to denote sets of clocks. We will denote
by Ass the set of possible assignments, Ass = {v := expr | v ∈ V}, where expr

are arithmetic expressions using naturals and variables. Letters s, s′ . . . will be
used to represent a set of assignments.

A guard or invariant condition is a conjunctive formula of atomic constraints
of the form: x ∼ n, x − y ∼ n, v ∼ n or v − w ∼ n, for x, y ∈ C, v, w ∈ V,
∼∈ {≤, <, =, >,≥} and n ∈ IN. The set of guard or invariant conditions will
be denoted by G, ranged over by g, g′, . . ..

A Timed Automaton is a tuple (N,n0, E, I), where N is a finite set of locations
(nodes), n0 ∈ N is the initial location, E ⊆ N × G × Σ ×P(Ass) × 2C × N is
the set of edges, where the subset of urgent edges is called Eu ⊆ E, and they
will graphically be distinguished as they will have their arrowhead painted in
white. I : N → G is a function that assigns invariant conditions (which could
be empty) to locations.

We will write n
g,a,r
−→

s
n′ to denote (n, g, a, s, r, n′) ∈ E, and n

g,a,r
−→us

n′ when

(n, g, a, s, r, n′) ∈ Eu. 2

15



The semantics of a timed automaton is defined as a state transition system,
where each state represents a location and a clock and variable valuation.
Letters u, u′, . . . will represent clock and variable valuations, u, u′ ∈ IR+

0
C
×INV .

By u ∈ g we will represent that the valuation u makes g to be true, where
we assume that when g is empty u ∈ g is true. Furthermore, we also assume
that g is false when a variable used in g has not been assigned a value. By
u{s} we represent the valuation obtained from u by changing the value of the
variables as indicated by the set of assignments s (which can be empty). u|r
represents the valuation obtained from u by resetting to zero all the clocks in
r, and u + d represents the valuation that takes u and increases the value of
every clock by d, but keeping in both cases the value of the integer variables.

Definition 7 (Timed Automaton Semantics)
Let A = (N,n0, E, I) be a timed automaton. The semantics of A is defined
as the timed labelled transition system (Q, q0,→), where:

• Q ⊆ N × (IR+
0
C
× INV) (set of states).

• q0 = (n0, 0) ∈ Q, is the initial state, where 0 is the valuation that assigns
every clock to zero and every integer variable to ǫ (a special natural value
representing uninitialized variables).

• →⊆ (Q × IR+
0 × Q) ∪ (Q × Σ × Ass × Q) (delay and action transitions).

Delay transitions are in the form (q, d, q′), for d ∈ IR+
0 , denoted by q

d
−→ q′,

and are defined by the following rule:

- (n, u)
d

−→ (n, u + d) if and only if (u + d′) ∈ I(n), for all d′ ≤ d, d′ ∈ IR+
0 .

Action transitions are in the form (q, a, s, q′), for a ∈ Σ and s ∈ P(Ass),

denoted by q
a

−→
s

q′, and are defined by the following rule:

- (n, u)
a

−→
s

(n′, u′) if and only if there is an edge n
g,a,r
−→

s
n′, such that u ∈ g,

u′ = (u{s})|r, and u′ ∈ I(n′).
2

A concurrent system is usually modelled by a set of timed automata running
in parallel. A Network of Timed Automata (NTA) is then defined as a set of
timed automata that run simultaneously, using the same set of clocks and vari-
ables, and synchronizing on the common actions. In the following definition we
distinguish two types of action: internal and synchronization actions. Internal
actions can be executed by the corresponding automata independently, and
they will be ranged over the letters a, b . . ., whereas synchronization actions
must be executed simultaneously by two automata. Synchronization actions
are ranged over letters m,m′, . . . and come from the synchronization of two
actions m! and m?, executed from two different automata. The operational
semantics of a network of timed automata is then defined in a straightforward
way, as a natural extension of Def. 7.
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Definition 8 (Semantics of an NTA)
Let Ai = (Ni, n0,i, Ei, Ii), i = 1, . . . , k be a set of timed automata. A state of
the NTA {A1, . . . ,Ak} is a pair (n, u), where n = (n1, . . . , nk), with ni ∈ Ni,
and u is a valuation for the clocks and variables in the system.

There are three rules defining the semantics of a NTA:

• (n, u)
d

−→ (n, u + d) (delay rule) if and only if u + d′ ∈ Ii(ni), for all
i = 1, . . . , k and for all d′ ≤ d, d′ ∈ IR+

0 .
• (n, u)

a
−→ (n′, u′) (internal action rule) if and only if there is an edge

ni
g,a,r
−→

s
n′

i, for some i ∈ {1, . . . , k}, such that n′
j = nj, for all j 6= i, u ∈ g,

u′ = (u{s})|r, and u′ ∈ ∧
h=1,...,k

Ih(n
′
h).

• (n, u)
m
−→ (n′, u′) (synchronization rule) if and only if there exist i, j, i 6= j,

such that:
(1) n′

h = nh, for all h 6= i, h 6= j.

(2) There exist two edges ni
gi,m!,ri−→

si
n′

i and nj
gj ,m?,rj
−→

sj
n′

j, such that u ∈ gi ∧ gj,

u′ = (((u{si}){sj})|ri
)|rj

.
(3) u′ ∈ ∧

h=1,...,k
Ih(n

′
h).

2

From this definition, we can easily define the timed traces of an NTA as the
sequences of both delays and actions t ∈ (IR+

0 ∪Σ)∗ that can be obtained from
its initial state. We now define a V-context as any variation of a given context
in which the variables in the set V ⊆ V may have changed their values, but all
the remaining variables and all the clocks keep their values. We then define the
V-contextual timed traces of an NTA as the sequences of both delays and ac-
tions 4 that can be obtained for this NTA considering any possible intermedi-
ate V-context, i.e., for any reachable state of the NTA we do not only consider
those timed traces that are reachable from it, but also those that could be ob-
tained by changing some specific variable values in the intermediate contexts
in the sequence, even in the initial one.

5 Translating WS-CDL documents into Timed Automata

A function ϕ : Activities × PF(C) ×N −→ NT A× PF(C) is first defined
which associates an NTA to every activity. The main argument of this function
is the activity for which the translation is made, but it has two additional
arguments: one set of clocks and one location. The set of clocks indicates a set
of clocks that must be reset just before finishing the execution of the generated
timed automata (for compositional purposes). The location is used to transfer
the control flow there in the event of a failure.

4 Including the empty trace ǫ.
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Fig. 1. From WS-CDL to NTA (I)

We will denote by ϕ1(A,C, l) the first projection of ϕ, i.e. the obtained NTA,
and by ϕ2(A,C, l) its second projection, i.e. the set of clocks that should be
reset when using this NTA compositionally.

Thus, given a choreography C = (A1, A2), we define its associated NTA as
follows (Figure 3):
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Fig. 2. From WS-CDL to NTA (II)

• We first create a location ‘de’, which we call the “double exception location”,
which is used as the location to which the control flow is transferred in
the event of a failure within the exception activity A2. We then generate
ϕ(A2, ∅, de).

• We now create the exception location ‘e’, where the control flow is transfer
in the event of failure in A1, and then, we generate ϕ(A1, ∅, e).
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Fig. 3. From WS-CDL to NTA (III)

• We connect the exception location ‘e’ with the initial location of ϕ1(A2, ∅, de)
by means of an urgent edge, which must reset all the clocks in ϕ2(A2, ∅, de).

Figures 1 and 2 show how the function ϕ is defined for the different activities,
where we can observe that all the obtained automata have both one initial
and one final location, this property being preserved by all the constructions.
Furthermore, we can see that according to the previous description, in the
event of a failure, all of these constructions transfer the control flow to the
location indicated as third parameter in the function ϕ, and reset the clocks
indicated as third parameter in all the edges reaching the final location.

We omit a formal definition of the NTA produced as result of the application
of ϕ, as they can easily be deduced from both figures.

Let us now describe briefly how the translation works for the different activi-
ties:

• noaction, fail and assign: these have a simple translation, as we only have
to introduce an edge connecting the initial location with the final one (the
exception location in the case of fail). Notice that in the case of fail, the edge
is urgent, since no time can elapse when a fail action can be executed. In the
assign action we can observe that we need to introduce the corresponding
assignment operation in the timed automaton.

• inter(r1, r2,v1,v2, t): in this case three edges must be considered, one for
the interaction execution, which must be performed within the indicated
time interval, and only when v1 has a value assigned, and two additional
edges to capture the two possible cases of failure: time-out expiration (cap-
tured by using a location invariant) and v1 unassigned (this edge must be
urgent). Notice that when t = ∞ the time-out edge would not be introduced.

• A1 ;A2 : we first obtain the corresponding NTA both for A1 and A2, as
indicated in Figure 1, and then, we only need to collapse in a single location
the final node of ϕ1(A1, ∅, l) and the initial node of ϕ1(A2, C, l). Notice that
all the edges reaching this node must reset all the clocks in ϕ2(A2, C, l), and
also that the set of clocks to be reset when using the generated NTA is that
of A1.

• A1 ‖A2 : we first obtain the corresponding NTA both for A1 and A2,
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as indicated in Figure 1, and then, we add three new locations and the
edges indicated in the Figure, which are used to enforce the simultaneous
initialization and termination of both activities, by means of a new synchro-
nization channel c. We also add a new variable ve, initialized to 0, which is
used to prevent the execution of further transitions of one of the automata
when the other one has failed. Thus, we add the guard condition (ve = 0)
to every edge of both automata, and also the invariants I are replaced by
(I ∨ ve = 1), to avoid the time lock of the system when a fail has been
executed. Furthermore, the assignment ve = 1 is now included in every fail

edge of both automata.
• workunit(g, block,g’,A): We have distinguished two cases, depending on

the block value, the difference being that when block is false, there is an
urgent edge connecting the new initial location with the new final location,
labelled with the action τ , which resets the clocks in C. Notice that in both
cases if g is evaluated to true, the control flow is immediately transferred to
the initial location of ϕ1(A, ∅, l) by means of another urgent edge, and also
that upon termination of A the repetition guard g′ is immediately checked
in order to decide whether A should be repeated or the control should be
transferred to the new final location.

• Choice : The choice operator has a semantics that allows any alternative
to proceed by executing any of its enabled actions, which generates some
problems in the translation, specially in the case of workunits as alternatives
of a choice. We have previously imposed the restriction for these workunits
that are alternatives of a choice to have their block argument equals to
true, but we need to impose some additional restrictions on them in order
to define this translation. The first additional restriction that we consider is
that their first activity must be an interaction (it would not be problematic
to assume that this activity is either a noaction or an assign, but in such
a case the translation would be slightly different from that shown in the
Figure).

We also impose that no parallel activity appears as alternative in a choice.
The WS-CDL document description in [17] has nothing to say about this
specific case, probably because it would be rare to find a parallel activity
as an alternative in a choice. Actually, the translation for this case would
require a rather large distinction of subcases. Thus, taking into account that
this composite construction will be very unusual, we have decided to ban it
in the translation.

With these assumptions we define the translation for the choice operator
by unfolding all the inner choices it can contain, i.e., we define the transla-
tion for a general choice in which we may have as alternatives the following
activities: assign, noaction, inter and workunit, possibly in a sequence with
any other operator.

Figure 2 shows how this translation is made for a general choice in which
we have all of these activities as alternatives. However, notice that a choice
can also fail, but only in the case that all the alternatives fail. This means,
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Fig. 4. Fail Edges in a Choice

for instance, that if we have either an assign or a noaction as one alternative
of the choice, no fail action is possible. Then, in the case of a choice with
no assign and no noaction as alternatives, we must consider the two possi-
ble cases of failure: either the maximum time-out M of all the alternative
interactions has expired, with M = Max (t1, . . . , ts3 , t

′
1, . . . , t

′
s4

), or no source
variable of these interactions has a value assigned. In Figure 4 we depict the
two urgent edges that we should add in this case 5 .

Finally, we have omitted any consideration to the case in which the fail

activity is an alternative of the choice, because this fail action could not
ever be executed, so it could be removed. Of course, for the trivial case
fail2fail the translation would be the same as that of fail.

6 Correctness

In this section we show that this translation is correct, in the sense that given a
choreography C that uses a set of natural variables Var, its operational seman-
tics and the corresponding NTA behave in the same way, by generating the
same contextual timed traces, but abstracting from their internal movements.

Theorem 1 Let A be a WS-CDL activity using a set of variables Var, with
the restrictions introduced, and t(A) its corresponding NTA, as defined in the
previous section. Then, for any contextual timed trace s of [A]≡ there is a Var-

contextual timed trace s′ of t(A) such that φ(s) = φ′(s′), where φ is a function
that removes from s all the internal movements (empty transitions), and φ′ a
function that removes from s′ both the τ -movements and the synchronization
movements (introduced by the parallel operator translation). Conversely, for
any Var-contextual timed trace s′ of t(A) there is a contextual timed trace s of
[A]≡ such that φ(s) = φ′(s′).

Proof: We use structural induction on A:

• Base cases: These are the assign, noaction, inter and fail. For all of them

5 If M = ∞ the time-out edge would not appear.
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the result is immediate, just observing the contextual timed traces that we
can obtain with both semantics. For instance, in the case of inter, according
to the operational semantics we may have a failure in time zero when v1 = ǫ,
which is also the case in the automaton, due to the urgent edge labelled with
fail, and also, for t < ∞ we have a time-out failure in time t+1, which is also
captured by the automaton. Finally, the normal execution of the interaction
within the time t can be performed in both cases.

• General cases: we now assume as induction hypothesis that for any ac-
tivities A1, A2 (fulfilling the introduced restrictions) the contextual timed
traces coincide in both semantics up to functions φ, φ′. Let us then see the
different cases we have:
· Sequence: According to the operational semantics, the contextual timed

traces of [A1; A2]≡ are obtained as the concatenation of their contextual
timed traces, except in the event of a failure by [A1]≡, in which case the
timed trace terminates immediately with the fail action, and then, the only
possible evolution is time elapsing. The same occurs in the generated timed
automata, since we are collapsing in a single location the final location
of t(A1) and the initial one of t(A2), and also, all the clocks that t(A2)
needs to be reset are actually reset by the edges reaching that location.
Furthermore, in the event of a failure the control flow is immediately
transferred to the location l (by induction hypothesis).

· A1‖A2: Its contextual timed traces are obtained by the interleaving of
those of A1 and A2, but delay transitions must be performed by both
activities. The same occurs with the Var-contextual timed traces in the
corresponding NTA (Figure 1), although there are both one initial and
one final synchronization over the channel c (which are hidden by φ′).
Notice that we are not only considering the timed traces that each activity
can generate isolately, but also those that could be generated if some
variables in Var change their value throughout its evolution. Thus, this
trace semantics captures the fact that one of the involved parallel activities
may change the value of some variables in Var, thus affecting the later
behaviour of the other activity. This is not the case for the new variable
ve, which does not affect the behaviour of both automata as long as no
fail transition was executed. This is because the additional condition ve =
0 introduced in all the edge guards would always be satisfied, and also
because the OR-condition introduced in the locations with some invariant
(I ∨ ve = 1) does not perturb the previous invariant condition I, except
when a fail transition is executed, in which case ve changes its value to 1,
wich prevents any enabled transitions in the other automaton from being
executed. Time elapsing is, however, still possible in the current location
of this automaton, due to the change introduced in the invariants.

· workunit(g, block , g′, A1): Some cases must be distinguished here, depend-
ing on the value of block and the guard evaluation. When block is true,
time can elapse in both semantics until g evaluates to true, in which case
the activity is immediately started. In the operational semantics me have
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a null transition that activates the execution of the actions in A, which
is hidden by φ, and in the NTA we have an urgent edge labelled with τ ,
which is also hidden by φ′. Something similar occurs for the evaluation
of the repetition condition, g′, although in this case when it is false we
immediately abandon the workunit construction, using a null transition in
the operational semantics and an urgent τ -edge in the NTA. When block

is false, time cannot elapse in both cases, so if g is false the workunit
is immediately abandoned (again, by a null transition in the operational
semantics and an urgent τ -edge in the NTA).

· Choice: we use an extended choice with the syntax indicated in Figure 2.
From the operational semantics it follows that any alternative can pro-
ceed by executing its first activity, and this is also captured by the NTA
depicted in that Figure. Notice that a choice can only execute a fail transi-
tion when all its arguments are able to do so, because when an assign or a
noaction activity appears as alternative, there cannot be any possible fail
transition in the choice. Otherwise, the fail transition in the choice could
only be produced either by the time-out of all the alternative interactions,
or because no source variable is available in these interactions. Both cases
are covered by the edges indicated in Figure 4.

2

Corollary 1 Let C = (A1, A2) be a choreography that uses the set of vari-
ables Var and N the associated NTA. Then, for any contextual timed trace

s of C there is a Var-contextual timed trace s′ of N such that φ(s) = φ′(s′).
Conversely, for any Var-contextual timed trace s′ of N there is a contextual

timed trace s of C such that φ(s) = φ′(s′).
2

7 Case Study: List of Registered Voters Management

The use of Web Services for e-government has become more and more impor-
tant in the recent years. The expression e-government (from electronic gov-
ernment) refers to the use of Internet technology for providing services and
exchanging information related to the government administration. The Service
Oriented Computing provides an ideal framework for this kind of interactions.

In this case study we present a Service Oriented System that manages the lists
of registered voters in a country. We distinguish two different kinds of lists:
the federal lists and the local lists, for general and local elections, respectively.
The following restrictions must be taken into account:

(1) A European Union citizen (but not Spanish citizen) living in Spain could
vote in the local elections of his city, but cannot vote in the general
elections.

(2) A Spanish citizen who is living abroad could only vote in the general
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Fig. 5. Diagram of the system

elections.

We focus on the case of a citizen who decides to inscribe himself in these
lists. In Figure 5 we show the different parts of our system: the citizen who
interacts with the administration, the registry application that allows citizens
to access the e-government procedures, the shared repository that contains all
the information about the citizens and the communication protocols, and the
multiple services for the different federal and local administrations.

When a citizen decides to inscribe himself in the lists of registered voters, he
has first to login in the system through the registry application. For the sake
of simplicity, we are supposing that the login information sent by the user is
always valid. After login, the registry application sends the login information
to the shared repository, which has to be sent within a space of 5 minutes
at most. Later, all the information about the citizen is extracted from the
database of the shared repository, as well as the procedures that the citizen
could use. The information about the citizen and the procedures he could used
is sent in parallel to the registry application. Afterwards, the system shows
the citizen the possibility of inscribing himself in any possible list of voters,
depending on the circumstances listed before.

7.1 WSCDL Generation Phase

In Figure 6 we show part of the WS-CDL code corresponding to this case
study. We only focus on the parts that are involved in the translation into
timed automata, omitting the rest of the code.

Figure 7 depicts the specification of the case study in the algebraic language
that we use as a metamodel of WS-CDL. Letters A, C, and D correspond to
the interactions executed in a sequence at the beginning of the choreography.
Letters B1 and B2 correspond to the two interactions executed in parallel
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...

<sequence>

<interation name="Login of the citizen in the system"

channelVariable="Registry2RepositoryChannel"

operation="LoginInSystem">

<description type="description">

Sending the citizen user and password to Repositoy

</description>

<participate relationshipType= "RegistryRepository"

fromRole="Registry Application"

toRole="Shared Repository"/>

<exchange name= "LoginUser"

action="request">

<use variable="Login"/>

<populate variable="User"/>

</exchange>

</interaction>

<parallel>

<interation name="Information about the citizen from Repository"

channelVariable="Registry2RepositoryChannel"

operation="CitizenInfoFromRepository">

<description type="description">

Sending the citizen information from Repository

</description>

<participate relationshipType= "RegistryRepository"

fromRole="Shared Repository"

toRole="Registry Application"/>

<exchange name= "UserDataCitizenInfo"

action="response">

<use variable="UserData"/>

<populate variable="CitizenInfo"/>

</exchange>

</interaction>

<interation name="Information about procedures from Repository"

channelVariable="Registry2RepositoryChannel"

operation="ProceduresInfoFromRepository">

<description type="description">

Sending the procedures information from Repository

</description>

<participate relationshipType= "RegistryRepository"

fromRole="Shared Repository"

toRole="Registry Application"/>

<exchange name= "ProceduresDataProceduresInfo"

action="response">

<use variable="ProceduresData"/>

<populate variable="ProceduresInfo"/>

</exchange>

</interaction>

</parallel>

...

Fig. 6. WS-CDL specification for the case study (I)

after A, but before C. Letters E1 and E2 correspond to the options for the
different kinds of citizens that can be executing the process. Finally, letter F
refers to the interaction with a local administration, while letter G refers to
the interaction with a federal administration.

Figure 8 shows the translation into timed automata by applying the rules
described in Section 5. We can distinguish two automata in this Figure: the
Main automaton corresponding to the whole choreography and the Parallel
automaton that implements the parallel interaction B2.
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RegisteredVoters = A; (B1‖B2); C; D; (E12E2)

A = inter(Registry, Repository, Login, User,∞)

B1 = inter(Repository, Registry, UserData, CitizenInfo,∞)

B2 = inter(Repository, Registry, ProceduresData, ProceduresInfo,∞)

C = inter(Registry, Repository, SelOption, Option, 5)

D = inter(Repository, Registry, List, ListInfo,∞)

E1 = workunit(CitizenType == EuropeanInSpain, true, false, F )

E2 = workunit(CitizenType == SpanishOutSpain, true, false, G)

F = inter(Registry, Local, CitizenInfo, Citizen,∞)

G = inter(Registry, Federal, CitizenInfo, Citizen,∞)

Fig. 7. Algebraic Specification of the case study
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7.2 Validation and Verification

Once we have obtained the timed automata, we use the UPPAAL tool to check
the properties of interest in our system, which are the following:

(1) Information Sending On Time. We want to see if the system reaches the
exception location when a time-out occurs, i.e., when the citizen spends
more than 5 minutes doing nothing after login correctly. The query is
specified in the following way in UPPAAL:

(Main.Init Session ∧ x > 5) −− > Main.Exception

where Init Session is the name of the location previous to the execution
of the interaction C. We obtain that this formula is satisfied.

(2) European In Session E. We want to prove that the registry application
finally interacts with a local administration when the citizen is an Euro-
pean living in Spain, that is, interaction F is executed. We call After F
the location just after executing interaction F and we assign code number
1 to an European citizen. Then, the query is specified as follows:

A[] Main.After F imply Main.CitizenType == 1

We obtain that this formula is satisfied.
(3) Spanish in Session S. This property is complementary to the property

before. We want to prove that the registry application interacts with
a federal administration when the citizen is a Spaniard living outside
Spain, so interaction G is executed. We call After G the location just
after executing interaction G and code number 2 corresponds to a Spanish
citizen living abroad. Now we have the following query:

A[] Main.After G imply Main.CitizenType == 2

We obtain that this formula is satisfied.
(4) Ends On Time. Finally, we want to prove that the process finishes in

6 minutes at most, i.e., interaction F or interaction G is executed in
6 minutes after login. Otherwise, an exception will be thrown up. We
call Before Choice the interaction before executing interaction F or
interaction G, so the query in UPPAAL for this property is:

(Main.Before Choice ∧ x > 6) −− > Main.Exception

In this case, we obtain that the formula is not satisfied.

At this point, we have to go back to the WS-CDL generation phase and
modify the specification to fulfill the last property. The solution is adding
a time-out of 6 minutes to both, interaction F (“Send Inscription to Local
Admin”) and interaction G (“Send Inscription to Federal Admin”), and also to
interaction D (“Information about the corresponding list”). This modification
guarantees that it is not possible to finish the process later than 6 minutes
without throwing up an exception.
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Fig. 9. Main timed automaton modified

Figure 9 shows the modifications in the Main automaton corresponding to
the new specification. We can see that new invariants and guards are added
corresponding to the new time-outs.

Lastly, we check again the four properties described before with the UPPAAL
tool. Now, we obtain that the automata do satisfy all the requirements.

8 Conclusions and Future Work

WS-CDL (Web Services Choreography Description Language) is a W3C pro-
posal for the description of Web Services choreographies. The choreographic
viewpoint of a composite Web Service aims at describing the collaborations
between the involved parties regardless of the supporting platform or pro-
gramming model used by the implementation of the hosting environment.
WS-CDL therefore includes a repertoire of activity constructions that capture
the relationship between the actors involved in the choreography.

In this paper we have defined an algebraic language with a very similar syntax
to that of WS-CDL, in which its more relevant activity constructions have
been considered, and a barred operational semantics has been defined for it.
One important aspect of this algebraic language is that we have paid special
attention to the timing aspects of WS-CDL. Furthermore, we have also defined
a translation of WS-CDL specifications into a network of timed automata,
showing the benefits of this translation, as the possibility of simulate, validate
and verify some properties of the described system, by using a tool supporting
the NTA model, such as the UPPAAL tool.
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One of the main contributions of this paper, then, is the formalization of WS-
CDL semantics, which is presented in a textual way in [17], with the result
that this “official semantics” suffers from many deficiencies and ambiguities,
which are solvable with a formal semantics. Furthermore, the use of a very
well known formalism, such as timed automata, in order to obtain an alter-
native representation of the system is another important contribution of this
paper, since this alternative representation can be used to analyse the system
behaviour systematically.

Finally, as future work we plan to expand the subset of WS-CDL by consider-
ing some additional features, like the hierarchy of choreographies and finalizer
blocks.
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[20] N. Sharygina and D. Kröning. Model Checking with Abstraction for Web
Services. In Test and Analysis of Web Services, pages 121–145. Springer, 2007.

[21] V. Valero, M. Cambronero, G. Dı́az, and H. Macià. A Petri Net Approach for
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